Probabilistic Partial Evaluation: Exploiting Rule Structure in Probabilistic Inference
نویسنده
چکیده
Bayesian belief networks have grown to prominence because they provide compact representations of many domains, and there are algorithms to exploit this compactness. The next step is to allow compact representations of the conditional probability tables of a variable given its parents. In this paper we present such a representation in terms of parent contexts and provide an algorithm that exploits this compactness. The representation is in terms of rules that provide conditional probabilities in different contexts. The algorithm is based on eliminating the variables not needed in an answer in turn. The operations for eliminating a variable correspond to a form of partial evaluation, where we are careful to maintain the probabilistic dependencies necessary for correct probabilistic inference. We show how this new method can exploit more structure than previous methods for structured belief network inference.
منابع مشابه
Rule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملEfficient Query Evaluation over Temporally Correlated Probabilistic Streams
Many real world applications such as sensor networks and other monitoring applications naturally generate probabilistic streams that are highly correlated in both time and space. Query processing over such streaming data must be cognizant of these correlations, since they significantly alter the final query results. Several prior works have suggested approaches to handling correlations in proba...
متن کاملPrecise Propagation of Upper and Lower Probability Bounds in System P
In this paper we consider the inference rules of System P in the framework of coherent imprecise probabilistic assessments. Exploiting our algorithms, we propagate the lower and upper probability bounds associated with the conditional assertions of a given knowledge base, automatically obtaining the precise probability bounds for the derived conclusions of the inference rules. This allows a mor...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملExploiting shared correlations in probabilistic databases
There has been a recent surge in work in probabilistic databases, propelled in large part by the huge increase in noisy data sources — from sensor data, experimental data, data from uncurated sources, and many others. There is a growing need for database management systems that can efficiently represent and query such data. In this work, we show how data characteristics can be leveraged to make...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997